
 
 

Performance Analysis of sensors on SensorCloud 
 

Santhosh Kumar Saminathan 
Pervasive Technology Institute, Indiana University, Bloomington 

sasamina@indiana.edu 
 
 

Abstract 
        
     The objective of my independent study is to analyze the 
performance of sensors on sensor cloud in the pub-sub 
architecture by various factors namely time analysis, 
baseline analysis, middleware analysis, GPS sensor 
analysis and Hop level analysis.  
 
Key Words:  Sensor Cloud, Narada Brokering, 
FutureGrid, IaaS, Eucalyptus, Openstack Compute, Time 
Synchronization 
 
1. Introduction 
 
      Anabas, Inc. and the Indiana University Pervasive 
Technology Institute have partnered to develop a Sensor-
Centric Middleware System hereafter referred to as the 
Sensor Cloud. 
The objective of the Sensor Cloud Project is to provide a 
general-purpose messaging system for sensor data called 
the Sensor Grid Server, and a robust Application API for 
developing new sensors and client applications.  The key 
design objective of the Sensor Grid API is to create a 
simple integration interface for any third party application 
client or sensor to the Sensor Grid Server.  This objective 
is accomplished by implementing the publish/subscribe 
design pattern, which allows for loosely coupled, reliable, 
scalable communication between distributed applications 
or systems. 
      This report consists of an overview of the sensor 
cloud architecture and a collection of test results that have 
been done, both past and present on the sensor cloud 
middleware. These tests are conducted are designed to 
find the limits of the middleware, the broker and the 
network in which these tests are performed. 
 
2. Sensor Cloud Overview 
The Sensor cloud implements the publish/subscribe 
design pattern to orchestrate communication between 

sensors and client applications, which form an inherently 
distributed system.   

• Sensor Cloud Server creates Publisher-Subscribe 
Channels (Represented as a JMS Topic) 

• Sensors acting as publishers create 
TopicPublishers to send messages to a Topic 

• Client applications acting as subscribers create 
TopicSubscribers to receive messages on a topic 

• Apache ActiveMQ is used as the default-
underlying MOM and any other JMS style 
broker can be used as well. 

Figure 2.1 shows a high-level overview of a typical 
deployment scenario for the Sensor Grid.  The Grid 
Builder into logical domains deploys sensors; the data 
streams from these sensors are published as topics in the 
sensor grid to which client applications may subscribe. 
 
 

 
Fig 2.1 



 
 
Examples of physical devices already implemented 
include 

• Web/IP Cameras 
• Wii Remotes 
• Lego MindStorm NXT Robots 
• Bluetooth GPS Devices 
• RFID Readers 

 
However Sensors can be made from chat clients, Power 
Point presentations, web pages virtually anything which 
produces data in a time-dependent stream can be 
implemented as a Sensor Grid sensor.	
  

 
3. Large Scale Time Analysis 
 

For our large-scale time analysis of sensors connected 
to the Sensor Cloud, we have a number of scenarios set 
up. We began with a series of time runs on a smaller scale 
of about ten medium sized instances on Futuregrid India 
Eucalyptus. We observed a trend in deploying these 
sensors. 
 
3.1 Initial Small Scale Tests: 
3.1.1 The Setup 

Primarily, we made two runs. The first with a fixed 
transmission rate of 30 fps with varying sized data 
packets to simulate three video sensors of 320*240, 
640*480 and 800*480. The second with a fixed data size 
denoting a video sensor with a resolution of 640*480 with 
varying transmission rates at 20, 30 and 60 frames per 
second. We observed the following sequence of latencies. 

 
This was an initial attempt to get a feel of the way the 

system works. This effort was the first attempt made by 
us on this system. We set up instances manually on 
FutureGrid Eucalyptus. We attempted to test this setup on 
instances of varying sizes suspecting physical resources 
present in the node, however that did not seem a factor 
after a certain point as since after the point of optimum 
memory allocated to the domain, it was the network pipe 
which gave out. 

 

 
Fig. 3.1.1 

 
3.1.2 The Observation 
One common trend that we can observe in these graphs is 
that no matter what, the network becomes saturated more 
or less after we launch more than 80 sensors and get 
values from them at various publication rates. This 
attributes to the limited network pipe getting 
overwhelmed with our data packets. There is a steep 
increase after this number, which goes to show that as our 
number of sensors increase; the latency does too at an 
alarming rate thus reducing the overall reliability of our 
system. 
 
Again, in case of the 2nd graph in Figure 3.1.1, we can see 
a much larger change in the plot as the frequency of 
publication increases thus causing over-queuing in the 
network pipes and increasing the latencies. This test was 
only able to convince us that we were able to reach a 
choking point due to network bandwidths over the FG 
pipes and this has nothing to do with middleware, as it 
was still capable of loading more sensors into it. 
 



3.2 Larger Scale Tests: 
3.2.1. The Pre-requisites 

Before we could go on and launch a large number of 
sensors, there were a few issues we had to go through.  

• The one of prime importance was setting up of a 
Distributed Brokering network. 
NaradaBrokering, which is primarily used in this 
software, is one such broker, which supports 
distribution over multiple nodes.  

• Other than distributed brokering, there had to be 
certain configuration changes in the core 
Management files in the middleware to support 
hierarchical launch of the sub domains which 
can be intermediate ones or leaf nodes. 

 
3.2.2. The Setup 
The setup for this larger scale test was a little bit more 
complicated than the original procedure. It involved a lot 
of manual tasks of bringing up the domains and the 
brokers and the sensors, which was performed partly 
using scripts which log in and start the required services 
on dedicated nodes. 
 
In our perspective, given all the resources we have at our 
disposal, we estimate this to be about 12000 sensors that 
we can have online at once. Our system can probably go 
larger given the resources but concerns over memory and 
usable IP’s limit our scale to this extent. 
 
These tests are performed on the FutureGrid Testbed. The 
FutureGrid project is a research effort used to provide 
resources to test out complex research challenges on 
cloud systems. We primarily use the ‘India’ node on the 
Futuregrid to run all our tests. India hosts Openstack 
compute and Eucalyptus now and these IaaS services are 
those that we use to create instances (nodes) to hold the 
sensors and the other middleware elements. 
Common observations that we were able to note are 
shown below. 
For 11250 sensors online, we initially subscribed to an 
increasing number of sensors and found that the latencies 
are as follows. These measurements are taken at 5-minute 
intervals. 
Fig. 3.2.1 shows the latencies in milli-seconds on the y-
axis, values taken every 5 minutes. 

 
Fig. 3.2.1 

Clearly we can see that the network suffers from some 
QOS when subscribed to sensors around a hundred. These 
are sensors publishing at 20 fps with a packet size of 
7680B. 
 
In our next round of tests, we subscribe to a smaller 
number of sensors but these publish at 30 fps with the 
same packet size of 7680B. The values again prove the 
system’s capacity to hold upto 11250 sensors. 

 
Fig. 3.2.2 

In our final large scale run, we simulated a GPS sensor 
data using the benchmark sensor. This was done by 
making it send packets once every 2 seconds (rate of 0.5 
FPS) with a size of 100B. This roughly denotes a standard 
GPS sensor packet. We subscribed to 200 of these and 
observed latencies. 
Again, supporting upto 200 GPS sensors is well within 
the system and the network pipes. However, issues will 
arise when we support more than a thousand GPS sensors, 
as we will discuss later. 

 



4. Baseline Analysis 
 
The baseline analysis tests that we planned to make on the 
Futuregrid were already done by Alex Ho and his team of 
Anabas Inc. We will go through the outline of the tests 
they made in this section. 
 
The primary goal of this baseline analysis was to observe 
network level throughput of the Futuregrid systems. This 
will give us an idea of the time values that we calculate 
are true values or have some resting on internal 
communications within the Futuregrid. 
 
The first test, which was run, was to measure the bi-
directional throughput value of the nodes on the FG 
network. This is done by acquiring a couple of instances 
on all the nodes Hotel, India, Sierra and Foxtrot using the 
ping command together with the iperf command for 
measuring packet loss and round-trip latency under 
loaded and unloaded network between all 2-combination 
of the set of four clouds selected. We can see their results 
on the combinations of the connections of the nodes. 
 

 
Fig. 4.1 

While the maximum bi-directional throughput between 
any 2-combination ranges from 900 Mbps (on 
Sierra/Foxtrot pair) to 1,400 Mbps (on India/Hotel pair), 
we find the total iperf throughput in FutureGrid is over 

800 Mbps when we connect any pair of cloud instances 
on distinct clouds with more than 16 connections in each 
direction. 
We use the ping tool to measure network latency and 
packet loss between two clouds.  Figure 4 shows  the 
throughput between any 2 clouds in our experiments 
either levels off or starts to level off at 32 iperf 
connections for all but the connection between India and 
Hotel. 
 
Results show ping packet loss rates in unloaded network 
for all the 2-combination of clouds were 0%; while the 
highest ping packet loss rate is 0.67% between the 
India/Hotel pair.  The results indicate a highly reliable 
FutureGrid network under the experimental conditions. 
 

Instance Pair Unloaded Packet 
Loss Rate 

Loaded Packet 
Loss Rate 

India-Sierra 0% 0.33% 
India-Hotel 0% 0.67% 
India-Foxtrot 0% 0% 
Sierra-Hotel 0% 0.33% 
Sierra-Foxtrot 0% 0% 
Hotel-Foxtrot 0% 0.33% 

 
For baseline information we measure ping round-trip 
latency between 2 cloud instances on Sierra for the 
unloaded case and loaded cases with 16 and 32 
connections before we conduct the same experiment on 
distributed clouds. We find latencies for the unloaded and 
the two loaded cases between two virtual machines 
communicating on the same cloud no higher than 1.18 
milliseconds.  Thus, we could reasonably assume for the 
ping experiments on distributed clouds the measured 
round-trip latencies are mainly due to distance between 
clouds. Virtual machine overhead is negligible in these 
experiments. 
Ping round-trip latency for all six combinations of pairs of 
clouds is measured.  We find the lowest average round-
trip latency of about 18 milliseconds between India and 
Hotel in a loaded condition (see Figure 5).  India and 
Hotel has the shortest distance between any 2 of the four 
clouds; and thus, is expected to show the lowest round-
trip latency here. 
We observe the highest ping round-trip latency in a 
loaded network condition is about 145 milliseconds on the 
Sierra and Foxtrot connection (see Figure 6). Although 
the inter-cloud latency between Sierra and Foxtrot is the 
highest due to its longest distance between any two of the 



four selected clouds, we note that a round-trip latency 
below 300 milliseconds still meets a requirement for 
acceptable quality of service for collaboration 
applications with stringent network requirement like that 
of VoIP. 

 
Fig. 4.2 

 
Fig. 4.3 

limited initial results indicate that FutureGrid can sustain 
at least near 1 Gbps inter-cloud throughput and is a 
reliable network with low packet loss rate. 
 
Credit to Alex Ho and his team for these measurements. 
 
5. Middleware Analysis 
5.1. Key Areas 

In the middleware analysis section, we focus primarily 
on the points of strain on our middleware. There are a few 

areas of our system that are likely to fail here. Primarily 
this can be the broker. 

 
We were able to observe the case where when we have 

a large number of GPS sensors (by large, in this scope I 
am talking about a few thousands) we are able to see that 
when we run the client application to see the output of the 
GPS sensors, we can see messages intimating us of a 
possible connection loss within one of the brokers due to 
a communication overload. 

 
Another key area likely to fail is the middleware 

system itself. Although, we have not approached this 
magical number, which causes our middleware system to 
crash, I know that we have not yet broke into its inherent 
capacity to handle the load. Once we do hit this value, the 
core functionality of subscribing to topics that is the 
promise of the middleware system. 

 
Another area where failure might be a possibility is 

certain natural causes of network or node failure. 
Although there exists a single point of failure to the root 
domain of the entire setup, Futuregrid is inherently a 
highly reliable system. 

 
One last point of failure in our middleware system is 

the hardware resources available, mainly the memory that 
is used by the container service to allocate worker threads 
to the execution of many sensors. Any such cases are best 
sorted out beforehand and we can decide on the amount of 
memory to allocate to the container service and the 
amount of sensors. 
 
5.2. Time Syncing 
When we are faced with the problem of time syncing, 
there are many possible solutions we can turn to. One 
possible way to go about facing this problem is to make 
changes in our middleware to calculate the latencies of 
incoming packets by contacting the server for the current 
timestamp and then using the current timestamp and the 
timestamp on the received packet to figure out the 
latency. A rough representation of how that works is as 
follows. 
 
There is an inherent overhead in making a call to the 
external node to calculate the most recent timestamp but 
within a single datacenter, these minor timekeeping 
changes can be ignored. 
 



Another possible method of timekeeping is to use an 
external software, which automatically syncs up the 
current system it is installed in with an external server. 
One way to go about this is to have a common pool of 
servers from which we choose from to keep the nodes 
synced up. This is the approach we use since it involves 
little code change. One problem with this approach is that 
this method requires the node to be up for a certain 
amount of time before it synchronizes all the other nodes 
to this time. The software that we use for this purpose is 
called ‘Chrony’ and we include a pool of servers to which 
we synchronize to in its config file and wait for a 
particular window of time for which a system has to stay 
up. 
 
The figure 5.2.1 shows the set up in case we decide to use 
the timekeeping system maintained by the datacenter. 
 

 
 

Fig. 5.2.1 
 
6. Single Domain Level Analysis 
 

When we were testing on a much smaller scale on a 
single domain, there were quite a few interesting results 
that we observed.  

 
Initially, there is an inherent limit within the domain, 

which limits the NaradaBroker to not hold more than 
roughly 580 connections [sensors]. Connecting domains 

to multiple brokers can increase this number. Which are 
connected with each other in the form of a broker pool. 
Creating such a broker pool to which we can connect 
many domains and launch many sensors on those 
domains, a lot past the standard limits. 

 
Creating such a broker pool requires distributing the 

brokers across the network in such a manner that each 
broker present is connected to every other broker present. 
Initially, every broker, which is brought up, connects to 
the root broker first and gets its assigned logical address. 
It then has to connect to every other broker connected to 
the root so that the topics to which the data is published is 
available to every broker on the network. When we bring 
up a domain, we connect this domain to every broker in 
the broker pool. This is the method we use to get up a 
large number of sensors [of the order of 12000]. 

 
7. GPS Sensor Analysis 
 
Testing scenarios with the GPS sensor is slightly different 
from those used to test the benchmark sensors. This is due 
to the fact that once these sensors are launched, they 
immediately start publishing data and this data flows 
through the connected root domain. 
 
This caused an interesting test scenario for us where we 
were able to get large numbers of GPS sensors online at a 
time and they were live [around the order of 3000]. 
However, from when this count value crosses a thousand, 
we will be unable to view the data published from these 
sensors as the broker will tend to get overworked and that 
results in a loss of connection on the client side. 
 
 
8. Narada Broker Scalability Tests 
A series of scalability tests were also done on the NB 
level using the middleware. These tests were to verify the 
work done by Alex Ho in the past to test the number of 
clients that one can scale with increasing number of 
brokers. 
 
Alex had confirmed earlier that a single Narada broker 
can be used to support around 2000 clients comfortably 
for a simple low end video sensor. When we use the terms 
low end or high end video sensor we can assume the 
following. The low end video sensors are simulated 
sensors publishing at the rate of 10 fps a data packet of 
1024 bytes and a high end sensor is one simulated by 



publishing at a rate of 33 fps a data packet of size 7680 
bytes. The tests that Alex performed with a low end 
sensor was confirmed again by us and repeated with a 
higher end video sensor. 
 
The observations that we noted are shown below. We can 
find that Alex’s observation of a single broker supporting 
only 2000 clients was confirmed as the latencies grew to 
become unbearable after that. But when these clients were 
distributed over multiple narada brokers, we could notice 
that the latencies were very well within the tolerated 
range and so we can say for sure that as we increase the 
number of brokers, we can scale out the number of clients 
as well. This observation was noticed from the figure 8.1. 
 

 
Figure 8.1 

A similar set of tests was also replicated for the case of 
using a high end video sensor. We noticed a trend similar 
to the earlier tests but we were able to support way less 
clients than we did for the Low end video. This could be 
any of the two possible reasons. The first one being the 
limiting factor in a single Narada Broker to handle only 
that much data and the broker giving out. The other being 
the network pipes being used in the tests. In our tests, we 
use a standard 1 Gbps pipe for communication and so 
after a number of clients, this pipe has a greater change of 
getting filled and that causing the noted latency 
abnormalities. These trends were similar when we 
increased the number of broker units. We were able to 
scale the number of clients subscribing to this high end 
video sensor but it was nowhere close to the number of 
clients that a low end client could subscribe. These 
observations were drawn from the following performance 
chart with regard to the high end video sensor. 
 
Again, in theory, the Narada broker should be limited 
only by the number of messaged per second and not the 
size of the data packet in the high end video sensor so 

technically, it must be able to support 1/3rd of the clients 
that a low end sensor supports. But this assumption 
cannot be measured with the network configuration as we 
use only a 1 Gbps pipe. Absolute confirmation can be 
obtained by repeating similar tests on an Infiniband 
connection so that we are not network stymied. These 
tests will be completed later. 
 
The tests completed for varying number of brokers and 
clients to support a high end video sensor on a 1 Gbps 
connection can be found in Figure 8.2. 
 

 
Figure 8.2 

9. Geometric Tests 
After verifying scalability tests with the video sensors, we 
repeat a single test on multiple nodes spread out 
geographically all over the country and the latencies are 
verified. The test repeated here is the latency test on a low 
end video sensor with it supporting clients over two 
narada broker nodes. This test was carried out with the 
clients spread out over the Sierra node on Futuregrid 
located in San Diego and the Hotel node located in 
Chicago. We were able to note significant lags in the 
latencies due to the distances of the nodes. 
 
The latencies observed with the Sierra node was greater 
than that observed from Hotel as the Hotel node is closer 
to the local India node and the Sierra node is across the 
country. Results observed are plotted in the Figure 8.3. 
 



 
Figure 8.3 

10. Summary 
 
On the whole, a whole series of tests had been made and 
are still being planned. From the results that we have, I 
think its fair to say that this middleware system is robust 
in its own way. It supports scaling of sensors to an extent 
once we figure out how it can be done.  
 
Performance metrics taken so far do show us that we have 
come across a number of scenarios on the large scale 
where the scalability of the middleware has not been 
brought into question since we seem to be running out of 
resources well before then. 
 
On smaller scale analysis, we see a number of areas that 
had issues and have been worked with including scaling 
the brokers to support a larger sensor base and so on.  
To conclude, I would like to thank Dr. Fox for providing 
me a chance to work on this system and Ryan Hartman 
for helping me along. 
 
11. Acknowledgements 
 
This project uses the FutureGrid testbed. The FutureGrid 
a project supported by the National Science Foundation 
under Grant No. 0910812 to Indiana University for 
”FutureGrid: An Experimental, High-Performance Grid 
Test-bed. I would like to thank Dr. Geoffrey Fox for 
giving me an opportunity to work on this project. I would 
like to thank Ryan D Hartman for the constant support 
and guidance. Also I would like to thank Sharif Islam for 
the support via mail. 
 
 
 

 
12. References 
 

1. NaradaBrokering. Scalable Publish Subscribe 
System 
http://www.naradabrokering.org/documents.htm 
 

2. Geoffrey Fox. FutureGrid Platform FGPlatform: 
http://www.futuregrid.org. 
 

3. Pallickara, S. and G. Fox, NaradaBrokering: a 
distributed middleware framework and 
architecture for enabling durable peer-to-peer 
grids, in ACM/IFIP/USENIX 2003 International 
Conference on Middleware. 2003, Springer-
Verlag New York, Inc. Rio de Janeiro, Brazil. 
 

4. Eucalyptus Open Source Cloud Software. 
  Available from: http://open.eucalyptus.com/ 
 

5. Geoffrey C. Fox, Alex Ho, Eddy Chan, 
Measured Characteristics of FutureGrid Clouds 
for Scalable Collaborative Sensor-Centric Grid 
Applications  

 
6. Experiences with Eucalyptus: Deploying an 

Open Source Cloud [Rick Bradshaw, Argonne 
National Laboratory, bradshaw@mcs.anl.gov, 
Piotr T Zbiegiel, Argonne National Laboratory, 
pzbiegiel@anl.gov] 
 
 
 

 


